Technische Universität Berlin offers an open position:
part-time employment may be possible
The Berlin Institute for the Foundations of Learning and Data (BIFOLD) at Technische Universität Berlin (Prof. Dr. Klaus-Robert Müller) is seeking a Research Associate in Machine Learning for an Agility subproject. The agility project will be carried out in close cooperation with the project "The Sphere. Knowledge System Evolution and the Shared Scientific Identity of Europe" (https://sphaera.mpiwg-berlin.mpg.de) by Prof. Dr. Matteo Valleriani at the Max Planck Institute for the History of Science in Berlin.
Valleriani's group is developing algorithms to study knowledge systems in the history of science. Building on a dataset extracted from astronomical tracts of the early modern period (ca. 1450-1650), the overall goal of the project is to identify mechanisms of knowledge evolution and to quantify these processes. Data refer to texts, images, and numerical computational tables. The focus of this unit is on transcribing, augmenting and analyzing texts using machine learning.
Independent and responsible research in the area of machine learning. The goal is to quantitatively determine semantic relations between texts.
The tasks involved are:
Desirable qualifications:
Please send your written application, quoting the reference number, with the usual application documents to Technische Universität Berlin - Die Präsidentin - Fakultät IV, Institut für Softwaretechnik und Theoretische Informatik, FG Maschinelles Lernen, Prof. Dr. Müller, MAR 4-1, Marchstr. 23, 10587 Berlin or by e-mail (one PDF-file, max. 5 MB) to: jobs@bifold.berlin.
Application documents sent by post will not be returned. Please submit copies only.
By submitting your application via email you consent to having your data electronically processed and saved. Please note that we do not provide a guarantee for the protection of your personal data when submitted as unprotected file. Please find our data protection notice acc. DSGVO (General Data Protection Regulation) at the Technische Universität staff department homepage: https://www.abt2-t.tu-berlin.de/menue/themen_a_z/datenschutzerklaerung/ or quick access 214041.
To ensure equal opportunities between women and men, applications by women with the required qualifications are explicitly desired. Qualified individuals with disabilities will be favored. The Technische Universität Berlin values the diversity of its members and is committed to the goals of equal opportunities.
Technische Universität Berlin - Die Präsidentin - Fakultät IV, Institut für Softwaretechnik und Theoretische Informatik, FG Maschinelles Lernen, Prof. Dr. Klaus-Robert Müller, Sekr. MAR 4-1, Marchstr. 23, 10587 Berlin
ID: 175992